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INTRODUCTION

Virtually! all of the residential and commercial heat pumps available in today’'s market
operate on the same fundamental principles as do, that of the vapor compression cycle.
Also, virtually all of these systems use fluorocarbon compounds as a working fluid and have
a constant speed positive displacement compressor with leaf spring valves?. This concept
has been continuously developed throughout this century and has served society well;
however, it contains a couple of inherent limitations which cause any particular design to
perform somewhat less than ideally. The first and most significant of these limitations is
due to the fact that a refrigerant’s density is proportional to its pressure. Therefore,
when the evaporator temperature is required to be decreased, the saturation pressure must
also be decreased with a corresponding reduction in the circulating refrigerant suction
density [positions (1 through 5) of Fig. 1], causing a loss in system capacity. This
capacity loss is accented by the use of constant speed piston compressors whose valves
operate on a differential pressure between the interior cylinder conditions and either the
suction or discharge line pressures. If either the condenser or evaporator temperature
conditions increase or decrease, respectively, less valve open time will exist per stroke
and thus less refrigerant will be pumped; leading to an additional loss in capacity. This ~
capacity reduction is particularly significant in the heat pump heating application for
residences since it occurs simultaneously with an increase in building transmission (and
thus heat pump) load. '

Of course, this overall decrease in refrigerant mass flow rate which causes the decrease in
capacity also causes a decrease in compressor work. However, since the pressure difference
or lift has increased the work per unit mass of refrigerant has increased and thus the
compressor work never decreases as much as the capacity, resulting in a net decrease in
heat pump efficiency or coefficient of performance (COP). This steady state part load
phenomena has the most significant influence on the seasonal performance of today's heat
pumps and thus must be determined most carefully in any evaluation procedure.

1A very small percentage of the air conditioning in the U.S. is based on the thermally
activated absorption cycle.

2Screw, rotary and scroll compressors use a different valving system.
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Heat pump operation in the heating mode is unique among the family of refrigeration
machines in that the desired commodity is the condenser output instead of the evaporator
input. Residential heat pump applications in the U.S. require the same machine to do both
heating and cooling, thus the most important parameter, capacity, alternates between
condenser output for heating and evaporator input for cooling and dehumidifying. The
machinery elements basic to the current dual mode heat pump designs are shown in Fig. 1.
In addition to the four elements included in all refrigeration systems (i.e. condenser,
evaporator, compressor, expansion device), a reversing valve and often an accumulator are
required in a heat pump. Although the latter two have only secondary thermodynamic
importance, the reversing valve allows the heat exchangers to be alternately used for
condensing and evaporating purposes (which necessarily compromises their'steady state
performance). The accumulator’'s primary function is to protect the compressor from
receiving a slug of ‘liquid refrigerant particularly during the reversing periods demanded
by the defrost system. This accumulator, also acting as a storage reservoir for that
refrigerant which is not being cirtulated, tends to cause the system to respond slowly to
changes in demand; particularly during start-up [1].

Fig. 1. Elements of a traditional heat pump

Similarly heat pump designs which incorporate oversized compressor crankcases, in lieu of
accunulators can suffer from this same dynamic response degradation. Thus cycling losses
are typically more significant for heat pumps than air conditioners. There can be either
water or air media acting as either a source or sink fluid; however, the overwhelming
majority of U.S. residential applications use air for both source and sink. This means
that for the period in which the outdoor coil is acting as an evaporator (e.g. winter)
frost will form degrading the system's capacity by blocking the air passages between the
finned tubes. This frosting effect as well as the energy required to defrost the coil is
an additional loss associated with today’s current heat pump designs.

- Although there are many other factors that will affect the heat pump’'s field performance
" (e.g. sizing, duct losses, etc.) it is primarily supplemental resistance heating and these

two, cycling and frosting, that prevent the seasonal efficiency from being a simple
weighted summation of steady state efficiencies at various outdoor temperatures. These
factors along with sufficient steady state full and part load operational data are used to
form the basis for today‘'s air-to-air heat pump performance testing procedures.

Steady state efficiency is presented in a variety of forms, all of which are based on the
same principle of the ratio of the desired commodity to the cost of the input. For steady
state efficiency, the heating mode term is coefficient of performance (COP) defined as the
condenser output in watt-hours to the energy consumed in watt-hours; where the heating
output is enthalpy increase of the indoor air stream and the energy consumed is electric
input to compressor, outdoor fan, indoor blower, crankcase heater and controls but pot the
supplemental resistance heat. The cpoling mode efficiency term is the energy efficiency
ratio (EER) defined as the enthalpy decrease of the indoor air stream (i.e. both sensible
and latent heats) to the energy consumed which is again the total electric input. 1In
principle the EER is identical to the COP except for the conversion factor of 3.413
Btu/watt hour. This somewhat non-rigorous scientific term, EER, has been agreed upon by
the industry because the cooling efficiency is the primary parameter used by the energy
conscious consumer for selection among units. It is felt that the wider spread between the
EER rating number would be more easily distinguished between by the layman. For example,
three units having COP values of 2.46, 2.70. 2.93 will have EER values of 8.4, 9.2, 10.0
respectively.
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Fig. 2. Heating and cooling performance characteristics of a typical air-source heat pump.
Of course these steady state efficiency terms cannot recognize the cycling and frosting
degradations that inevitably occur during field operation. For this purpose the heating
seasonal performance factor (HSPF) and the seasonal energy efficiency ratio (SEER) were
created. They are defined as total seasonal heating capacity or total seasonal cooling and
dehumidifying capacity to total seasonal electric consumption in watt-hours, respectively.

Note, again the dimensioned efficiency format is used. In principle they are the same
thing and are based on a weighted average (with number of hours in each 5°F temperature
"bin") of the COP obtained by dividing the respective capacities and power values shown in

Fig. 2. That is:
k
I ny Load(T,)[1/COP(T,)]
1 =1 seasonal output

— where SPF = (1)

SPF  k seasonal input
I ny Load(Ty)
J=1

and vhere n; is the number of hours within the 5°F temperature bin, j, for the region the
unit is being rated, Load(T,;) is the respective load or capacity for the same bin and

N COP(Ty) is determined from the ratio of the dynamic capacity (solid line) to the power in

This will account for the cycling and defrosting effects as
The above equation applies in principle to either the

the same temperature bin.
prescribed by the rating criteria.
heating or cooling season.

TEST AND RATING METHODOLOGIES

Because of its predominance in the US market the air to air heat pump is the unit exemplified
in this paper to demonstrate how field performance may be characterized but not simulated
or duplicated in a laboratory based rating scheme. Its performance is plotted in Fig. 2
vwhere it is assumed that the unit is sized exactly for the cooling load design condition
(the official DoE/NBS rating procedure assume 108 oversizing). The capacity decreases,
with increasing saturation temperature differences between the evaporator and the condenser
(i.e. as indoor and outdoor temperature differences grow), as indicated by the dotted curves.

The testing procedure for heat pumps in the cooling mode requires one certification point
taken under full-load steady-state conditions at 35°C DB (95°F) outdoor temperature and
26.7°C DB (80°F)/19.4°C WB (67°F) indoor conditions. In order to establish a measure of
the part-load cyclic effect it is necessary to evaluate the unit at one more outdoor
temperature condition. The outdoor temperature at which this test is run is somewhat
arbitrary; a value of 27.8°C (B82°F) was selected, because it is the weighted mean of the
U.S.A. national summer dry-bulb temperatures.? As in the existing full-load test, the

3Weighted in proportion to unitary air conditioner sales around the country.



indoor coil should be wet (same indoor conditions as the 35°C test) during the test, since
dehumidifying is inseparable in the cooling mode. Unfortunately, cycling a unit under wet-
coil conditions presents both accuracy and repeatability problems. Wet-bulb instrumentation
systems have long time constants so that both room control and indoor air stream enthalpy
measurements are unreliable under periodic conditions. It was, however, noted through a
series of tests, run with the meticulousness that only a research lab could afford, that:

COoP cCoP
CYC cYeC

coP coP
SS dry coil SSs wet coil

Vith the assumption that the above relationship is true in general, one can then deduce the
part-load wet-coil performance from a set of two steady-state tests (one wet, one dry) and
a cyclic dry-coil test, all at the same outdoor temperature condition. Based on typical
thermostat designs which control units to cycle at approximately 3 CPH at 50% on-time, the
recommended cyclic test operation is 2 CPH at 20% on-time, which corresponds to 6 minutes
on/24 minutes off.

With this cyclic wet-coil value calculated by means of the previous equation, a performance
line may be defined by it and the steady-state data point at 35°C (95°F) (See Fig. 2). A
load weighing process similar to the traditional bin method may be conducted for the rating
procedure. This rating procedure may be expressed as:

k

T ny X(Ty) Q, (Ty)

e
SEER =X, E, (I)

Iy o
o N TEF®)

where: SEER is the cooling seasonal performance factor which is the new figure of merit
accounting for cyclic as well as steady-state effects.

Q4 (Ty) 1is the unit’s steady state capacity at each bin temperature, Ty.

X(Ty) 1is the load factor which is equal to the ratio of building load, CBL(T,), to the
steady-state capacity, Q,,(T;), when the steady-state capacity is greater than
the building load. Otherwise it is defined as equal to one. It is approximately
the percentage of the compressor on-time for each bin.

PLF(X) 1is the part-load factor, which is a function of the load factor. More explicitly,
PLF =1 - C; (1 - X(Ty)) vhere C, is the cyclic degradation coefficient defined by
the slope of a line on a normalized capacity (Qcyc/Qss) to normalized efficiency
(EERcyc/EERss) graph which has been defined by the steady state full load test;
and the cyclic test results.

E,,(Ty) 1is the steady-state power input for the particular outdoor temperature T,.

Although the number of terms in Eq. (2) make the expression somewhat complicated, it is
still of the same basic form as the inverse of Eq. (1). The numerator is the seasonal
output or building load that must be met, and the denominator is the seasonal input vhich
includes the penalty factor for cycling effects.

The value of C, is assumed to be constant when in fact it is a variable. Complete
.characterization of the C, variation over the entire load range would require unreasonable
amount of testing. The cyclic test specifications given above should result in the best
known single valued representation of the C, variation. The rating procedures offer an
option to the cyclic testing by accepting an assigned value of .25 for C,. Based on
measurements made on a variety of models presently in production, it would appear that
different designs can have an average Cp value anywhere from .01 to .35, The optional
assigned value (.25) is not intended to be a median or a goal of any sort. It was selected
so as to encourage the manufacturer to compete in the marketplace by designing (and testing
to verify) a more seasonally efficient unit, (i.e. one whose C; < .25). On the other hand,
those manufacturers who find the additional testing too burdensome still have a way to
avoid increasing their testing costs without too drastic a performance penalty. Thus the
0.25 value was selected as a compromise between these opposing political-economic forces
rather than for purely technical reasons.
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For a heat pump having a single-speed compressor, it is possible to employ a simplified
method to evaluate its SEER for an average U.S. climate. It can be shown that multiplying
the COP obtained in the wet-coil test at 27.8°C (82°F) by the PLF evaluated at X = 0.5
(i.e. PLF = 1 - 0.5 Cp) yields a result which is virtually identical to the value of SEER
obtained by applying Eq. (2) to national average bin data. This is equivalent to saying
that the SEER can be found by evaluating the heat pump's dynamic COP at the national
average cooling season temperature of 27.8°C (82°F) and the load factor (X=0.5) corresponding
to this average temperature.

Testing procedures for heat pumps in the heating mode require two certified test points
taken under steady-state conditions at 8.3°C (47°F) and -8.3°C (17°F) outdoor temperatures
and 21.1°C (70°F) DB/15.6°C (60°F) maximum VB indoor conditions. In order to establish a
part load performance curve, it is mnecessary to require two additional test points to
account for the cyclic effect and the frosting effect. The cyclic test point is reached
directly from one test since the indoor coil is dry in the heating mode. The outdoor
temperature value of 8.3°C (47°F) is prescribed as a matter of convenience since the
traditional steady-state point (still used for capacity rating) is measured at this
condition. This point does tend to be a good upper bound point, since typically the
capacity curve will flatten at warmer temperatures. The frosting-point test is at 1.7°C
(35°F). This is the point at which the maximum rate of frost might be expected to occur.
A lower temperature condition would have less water vapor in the air, while a higher
temperature condition might result in natural melting during the off-cycle. The frost
buildup/defrost effect begins with the steady-state -8.3°C (17°F) point where no frost is
assumed to occur, and causes the performance curves to deviate from the existing steady-
state values in a linear direction through the 1.7°C (35°F) test point until 7.2°C (45°F),
where a step change out of the frost region is assumed to occur. For convenience, this
step change is defined at an edge of a temperature bin, and assuming that most outdoor
coils have a 5.6 to 8.3 degrees C (10 to 15 degrees F) temperature difference between the
air and the refrigerant, the 7.2°C (45°F) value seems to be reasonably representative of
field behavior. The cyclic effect is superimposed on the frosting effect between the
balance point and 7.2°C (45°F). At 7.2°C (45°F) and above, the heat pump’s performance is
degraded only by the part-load cycling effect.

The rating procedure is, as before, a matter of considering the cyclic capacity, cyclic
power, and number of operating hours for each temperature bin and determining the weighted
average for the heating seasonal performance factor. Algebraically, this may be expressed
as: k

Y n; HBL (T))

i=1
HSPF = 3
k
X (Ty)
Z 5§ (1,) E,, (Ty) + RH (Ty)
PLF(X)
j=1

where: HSPF, ny, X(TJ), PLF(X), Egg(T,) have the same definitions as those in Eq. (2)
except they are now applied to tgxe heating mode.

HBL(Ty) is the building heating load requirement which is shown in Fig. 1 and is defined
by a zero value at 18°C (65°F) and the design heating requirement (DHR) value at
the outdoor winter design temperature (Top) -

§(Ty) 1is the heat pump low temperature cut-out factor to account for those systems which
have compressor that shuts off at a given outdoor temperature. It has a value of
0 if T, < the cut-off temperature , a value of!1 if Ty, > the cut-on temperature,
and a value of 1/2 if T, is in between these two temperatures.

T, =67 - 5; is the representative temperature within the jth bin.

RH(T;) dis the quantity of energy for resistance (supplemental) heat required for each -
bin. As illustrated in Fig. 1, it has a zero value at temperatures above the
balance point and a finite value in the shaded triangular region below the balance
point. It is, of course, quite sensitive to the sizing criteria and affects the

HSPF significantly.

Both Eq. (2) and (3) are applicable to single-speed compressor/fan units only. The
concepts discussed for these single-speed procedures are equally applicable for two-speed
units, but require additional testing and more complex expression for the rating to account
for the differences in operation at both speeds. Details are described in documents listed
in TABLE B-3.
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ANTICIPATED PROCEDURAL CHANGES FOR 1988

Although there was a multitude of technical issues addressed throughout the 1987 Rule
Making proposed by DoE, the most significant was the inclusion of two systems never before
addressed, the variable speed heat pump and the mixed-matched air conditioner. The
following discussion is based on the NBS proposal to DoE after review of the Industry
comments of the Proposed Rule Making.

The distinguishing feature of a variable speed system is that it compressor can operate at
different speeds and allows the system to modulate its capacity within a certain range.
Because of a capacity range it can provide, a variable speed system has two balance points
in a given installation, and three modes of operation as shown for the cooling mode on Fig.
3. The low speed balance point, depicted in Fig. 3 as t;, is the outdoor temperature at
which the capacity line at the minimum compressor speed intersects the building load line.
The high speed balance point, depicted in Fig. 3 as t,, is the outdoor temperature at which
the capacity line at the maximum compressor speed intersects the building load line.
These two balance points separate three outdoor temperature ranges corresponding to three
cases of operation of a variable speed unit. Operation of a variable speed system at the
outdoor temperature ranges from 65°F to t; (case I) and from t, to 105°F (case III) is
identical to operation of the two speed unit and appropriate portions of a two speed unit
rating procedure can be applied to represent performance of variable speed equipment.
However, for the outdoor temperature range between the two balance points (case II) no
existing DoE (U.S. Department of Energy) procedure can represent adequately performance of
a variable speed system.

The determination of the minimum (k=1) and maximum (k=z), speeds lines are done by steady
state tests at the temperature indicated in Fig. 3. There is a cyclic test as well at 67°F
(19.4°C) but it is felt that it will seldom be used since the default C, = .25 results in a
rather minor penalty. Where as it may theoretically amount to a 12.5% decrease in the SEER
for a constant speed unit, it cannot exceed 5% for a variable speed unit with a capacity
modulation ratio of 2 and less than 2.5% decrease for a unit with a modulation ratio of 3.

In order to use the same rating bin approach as indicated by equation (3) it is necessary
to have a profile of the power input for the capacity profile that matches the building
load line, which is fixed by the zero load point at 65°F (18.3°C) and a point approximately
91% of Q%;2(95), (accounting for 10% ovetsizing). Empirical evidence indicates that this
profile is parabolic in nature with the power profile deviating from linearity more
strongly than either capacity or EER. Also, in order to minimize the amount of testing
only one intermediate test point is necessary such that when combined with the balance

. points’ power values a parabola can be fitted for the entire intermediate speed range. The

intermediate speed test (k=i) is not straightforward since one has to decide at which speed
to manually control the unit for the 87°F (30.6°C) test. To match the building load at the
temperature ‘is likely to be a lengthy hunt and seekd process in the laboratory. Therefore,
the 87°F (30.6°C) test is specified to be run at 1/3 of the way between minimum and maximum

_speeds and the results are extrapolated to the building load line along an assumed constant

speed profile whose slope is determined as the weighted mean of the maximum and minimum
speed profiles. It is this crossover point, which will typically be very close to 87°F
(30.6°C), of the capacity and power plots that is used to calculate the intermediate EER
value EERET!, The parabolic fit of the EER profile of the intermediate range in Fig. &4 and
the linear building line of the same range in Fig. 3 are then used to determine the power
values for each temperature bin by the equation: P(Tj) = CBL(T})/EER(TJ)
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The interrelation between the building load and capacity of a varisble speed system in the
heating mode is shown graphically in Fig.5. The line originating at the 65°F temperature
mark on the abscissa is the building load line. The set of two lines defined by system
capacities at the maximum compressor speed, Qx=2(17), 72(35) and Q% "?(47) provide a
simplified representation of system capacity at the maximum compressor speed at different
outdoor temperatures. Similarly, capacities Qc"1(47) and Q*"1(62) prescribe the system
capacity line at the minimum compressor speed. An additional test point on the figure is
Q=% (35), system capacity at the intermediate speed test. The compressor speed during this
test is to be the same as during the cooling intermediate speed test. Thus, the capacity
may or may not fall on the building load as indicated in Fig.5.

The rating procedure prescribes a range of design heating requirements (DHR) in the heating
mode for which the manufacturer has to evaluate the Heating Seasonal Performance Factor
(HSPF) in different climatic regions. Although all HSPF values are available to a consumer,
the HSPF value determined for a minimum DHR in Region IV has been selected for relative
comparison of performance of all heat pumps for advertising purposes.

The building heating load line is prescribed by the equation:

€5 - T, where: DHR = £ (Q (47)) ~_
BLH(T_‘) = C * DHR TOD = outdoor design temperature
65 - Top i ¢ = 0.77, an experience based correction factor

It was found during development of the single speed equipment rating procedure that this
prescription of the building load preserves a similar slope for the building load lines in
both the cooling and heating. This slope similarity would not be maintained for a variable
speed system if its maximum speed in heating is greater than maximum speed in cooling, and
capacity at maximum speed in heating was used for DHR calculation. In such a case, the
building load line would be unduly steep and the procedure would not provide the system
with the rating credit for reducing the seasonal contribution of the electric heater. To
alleviate this rating problem, the procedure prescribes a nominal capacity test in the
heating mode at an outdoor temperature of 47°F. This test is applicable only to systems
designed to run at a higher compressor speed in heating than in cooling and is to be
performed at the maximum compressor speed used in the cooling mode. This test is optional
and its result is to be used for evaluation of DHR only. If not performed, system capacity
at 47°F at the maximum compressor speed has to be used for load calculations. The procedure

for evaluating the intemedia{:o% power input is identical to that of the cooling mode.
T ] L] L - L]
= ! .
3]
= ®r
< = =
o
o - i
-~ B0F
5 N, Qm;:%
ez [ Ke2
<
3= awf ‘o2 Qget” %) .
'} Q*=(in ket Qk‘1 62
] - 14 Q (62)
z ‘“‘,M‘ i3 o
g‘ 20 |- ,,.mw*‘ n ka 1(‘
E T [ T
) L i i 1

-5 -] 5 25 35 45 55 65

OUTDOOR TEMPERATURE (°F)
Fig. 5. Capacity of a variaﬁe speed heat pump - heating.

The need for the development of a mixed-matched air conditioner rating procedure arose
primarily from the fact that there exists several “"coil-only” manufacturers whose products
are combined in the field with condenser units of a different manufacturer. This practice
necessitated a procedure by which a condenser test result with one coil(matched, m) and a
bench test coil (mixed, x) result ‘could be combined to predict the performance of the
condenser with the mixed coil. As a result of considerable laboratory data and system
simulation studies the following relationships were developed for capacity:

Q + P, = (Q +B) F.-37 « F,* (4)

and efficiency:

> 4 P-
SEER, = SEER, [”] [—] Fyxv
QJsz \Pxlsz (5)
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The mixed system capacity, Q,, is calculated by equation (4) using published rating data of
the matched system's capacity, Q,, and indoor fan power, P,, the indoor coil scaling
factor, F., and the expansion device scaling factor, F,. The scaling factors are the mixed
to matched coil capacity ratio and expansion device refrigerant mass flow ratios. The coil
capacity ratio can be predicted by computer simulation if the simulation has been verified
by the test of coils in the same family as those being simulated. Circuitry and coil air
flow angle must also be accountable by the simulation. The expansion device flow factor
and a coefficients are specified by NBS (see Table B-3 No. 6) for the various combination
of devices (i.e. orifice, cap. tube, TXV) possible. This flow ratio is significant not
only because it impacts the energy performance of the mixed system but also because it can
affect the reliability of the compressor. For this reason, the range of F, is restricted.
The mixed system efficiency expression, SEER,, equation (5), contains only one new adjustment
parameter, Fyyy. The capacity and fan power data for the mixed system Q, and P, are based
on similar test data as that in equation (4) except it is from the DoE test at 82°F
(27.8°C) outdoor temperature instead of 95°F (35°C) as in equation (4). The matched data
Q, and P, is required for 82°F (27.8°C) and that information is generally proprietary.
Therefore, a rather complex

Qe P,
expression for these two ratios [—] and [—x] has been derived based on an assumed

Qls2 Pulsz
capacity increase of 5% when going from 95°F (35°C) and B82°F (27.8°C). The expressions
used to determine the ratios (not shown in this paper) contain no other new data requirements.
The Fyyy is a thermostatic expansion valve factor, of the order of 5% or less, used to
account for the fact that the different (i.e. matched and mixed) expansion devices may have
different off cycle bleed capabilities. For example, if the matched system had a capillary
tube and the mixed, a non bleed TXV, the Fyyy = 1.05. This would suggest that the SEER,
should be 5% better than the SEER, (all other things being equal) because the performance
dynamics of the system would be improved due to the stoppage of the refrigerant draining
into the evaporator during the off cycle (i.e. the C; would be reduced).

This mixed-matched procedure of putting separate test results together to predict a system
performance requires assumptions in a minor way about how a generic system performs.
Therefore, it will always be somewhat less accurate than a test of *"matched” system. It is
therefore only recommended when the burden of test is to great to do otherwise.

FUTURE PROCEDURE DEVELOPMENTS

The future of test procedure development will obviously depend on the future developments
. in residential heat pumps and air conditioners. The law requires the Department of Energy
7= (and thus NBS) to restudy the current evaluation procedure at least every five years to see
if changes are mnecessary. Work, in another NBS Group responsible for water heaters, has
already begun developing rating procedures for systems that simultaneously condition the
- space and heat the domestic water. Such systems already exist as desuperheaters and

several companies have complete heat pump and water heater systems under development.
" . - Determining the load patterns for the various possible modes of operation would appear to
" .be one of the more significant challenges for this system’s rating procedure development.

The next five year period would seem to merit a consideration for change in the basic -
philosophy of not dealing with the control system during laboratory tests. Currently the -
units are manually controlled for all tests which are conducted under steady-state operating
conditions. However, the potential operating complexities possible under a variable speed
system with computer chip control of proprietary logic suggest that a more sophisticated
test procedure may be merited. Such ideas as providing humidity control during the period
that the space does not require cooling is now within the realm of heat pump control system
possibility. Varying the fans speeds or coil area usage for energy performance improvement
is possible. However, if one is to avoid placing an undue test and test facilities burden
on manufacturers, the continuing challenge of maintaining a minimal test requirement as the
basis for rating all possible operating modes must be met through imnovative evaluation
procedure developments. To this extent it is indented to give some consideration to the
use of emulators as part of the test unit’s operational control scheme during the laboratory
evaluation period. It is hoped that emulator usage would allow for the heat pump system to
be responsive to a prescribed load pattern to assist in determining all the possible
operating modes the system could have. Once that is established, a series of steady state
test evaluations could be developed that would characterize that system’s performance
overall. Dynamic testing is always a possibility but the state-of-the-art of some of the
instrumentation transducers currently used would have to be advanced. :

The balance of test burden versus accuracy of consumer information will continue to be a
delicate one. But as systems grow more complex the problem is aggravated by the need of
understanding how a generic system performs so that default factors or performance factors
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can be used to alleviate the ever increasing testing requirements. In the past the factors
developed were possible because much was already understood about the reed valve, piston
compressor. Similar public knowledge about scroll compressor performance and any other new
component developments will certainly have to have a well reviewed history in the open
literature if future procedure developments are to be done in a timely fashion. To this
extent, the intra-industry/government cooperation that seems one of the keys to the
Japanese industry’s amazing progress should act as a model for the international industry
as a whole so that the consumer world-wide can be better served.

APPENDIX A
The Department of Energy sampling requirements are designed to minimize the testing burden
while maximizing the assurance that the test results of a few units may be applied to the
entire product line. Specifically the requirements are that the true mean is not less than
95% of the adjusted sample mean.

For example, a manufacturer might test two units from a product line whose SEER rated
values were 7.6 and 7.9. The mean value of these units is:

X =

R lod

B K =3 (1.6+7.9) =175

with a standard deviation of:
o= [53, o -0 = 6792 4 (09 - 7.15]" = .21

the lower confidence limit of the true mean is then:

% o=x-f2o7.95-32:078 @21 _,,
dn J2

where t = 3.078 is obtained from a table of one-sided percentiles of the t (Student’'s)
distribution for 90% confidence and n-1 degrees of freedom. Finally an adjustment can be
made to allow for the fact that the repeatability of the heat pump system test is considered
no better than 5%:

x. -
- 2 7.29 _
Xy =55 = g5 = 7.67

which is the SEER value this manufacturer ‘can claim for this product line.

-APPENDIX B

_There exist many types of residential heat pumps in the U.S.

The formal documents that describe these testing and rating procedures are listed in Table

_B-1, B-2, and B-3.

JABLE B-1 Current ASHRAE Heat Pump Test Standards

1. ANSI/ASHRAE 37-78: “Methods of Testing for Rating Unitary Air Conditioning and Heat
Pump Equipment”

2. ANSI/ASHRAE 116-83: °®Methods of Testing for Seasonal Efficiency of Unitary Alr
Conditioners and Heat Pumps®”

The American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), has
developed and maintains the laboratory test procedures relating to heat pumps (TABLE 1.

Standard 37-78 is the document that outlines the steady state procedure, tolerances and
test apparatus for all unitary units. One of the recommended test setups is illustrated in
Fig. B-1. The concept is to measure the airflow and the wvet bulb and dry bulb temperature
differences across the indoor coil to determine the enthalpy difference. This difference
is then confirmed within 5% by a similar determination on the refrigerant side for an
acceptable capacity test. Electric power input measurements allow for completion of
efficiency determinations. ASHRAE standard 116-83 has similar tests but also includes a
series of cycling and frosting tests along with a temperature bin rating procedure for
determining seasonal performance. Standard 116 is a result of a joint government/industry
study after several years of experience with the Department of Energy (DoE) procedures.
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Fig. B-1. Tunnel air-enthalpy test method arrangement.

The DoE test procedures are identified by numbers 1 and 3 in TABLE B-3. As is the custom
in this industry the ASHRAE test procedures do not include specific criteria (e.g. test
operating conditions) that would allow for a numerical performance rating to be determined
for a given test unit. These criteria were developed by the manufacturers through their
industry association, the Air Conditioning and Refrigeration Institute (ARI), in conjunction

with other interested parties. For the case of energy advertising and labeling the
official NBS/DoE procedures for both testing and rating are NBSIR's 77-1271 and 80-2002.
TABLE B-2 Current ARI Heat Pump Standards

1. ARI 210-81%: Standard for Unitary Air Conditioning Equipment

2. ARI 240-81%: Standard for Unitary Alr Source Heat Pump Equipment

3. ARI 210/240-84: Standard for Unitary Air Conditioning and Air Source Heat Pump
Equipment

4. ARI 320-86%: Standard for Water Source Heat Pumps

5. ARI 325-86%: Standard for Ground-Water Source Heat Pumps

6. ARI 340-86: Standard for Commercial and Industrial Unitary Heat Pump Equipment

7. ARI 380-87': Standard for Packaged Terminal Heat Pumps

hd es o] e

1. NBSIR 77-1271%: “"Method of Testing, Rating and Estimating the Seasonal Performance of
~ Cental Air Conditioners and Heat Pumps Operating in the Cooling Mode"
2.  NBSIR 79-1911: “procedures for Testing, Rating, and Estimating the Seasonal Performance
of Engine-Driven Heat Pumps”®
3. NBSIR 80-2002%: “Method of Testing, Rating and Estimating the Heating Seasonal
Performance of Heat Pumps®

" 4. NBSIR 80-2090: "Estimating the Heating Seasonal Operating Costs of Residential

Hybrid Heat Pumps Systems, Including Units Retrofitted to 0il, Gas,
and Electric Furnaces”

5. NBSIR B1-24345: sMethod of Testing, Rating and Estimating the Seasonal Performance of
Ground-Water Source Heat Pumps®”

6. NBSIR 86-3301%: <“Rating Procedure for Mixed Air Source Unitary Air Conditiomers and

. Heat Pumps Operating in the Cooling Mode"

7. NBSIR 88- 6. “Recommended Procedure For Rating and Testing of Variable Speed Air

Source Unitary Air Conditioners and Heat Pumps”

For an air-to-air residentisl heat pump the current official ARI standards are 210-81 and
240-81; these are used in conjunction with ASHRAE 37-1978. ~ They are compatible with the
industry standards in every way except they are more comprehensive, in that they require
dynamic testing and seasonal ratings. In turn, ASHRAE 116-1983 and ARI 210/240-84 are
slated to be adopted by DoE later this year as the newv *improved” testing and rating
procedures which will place industry and government requirements on an identical track.
The DoE rating procedures are required for all heat pumps with performance ratings of
single phase electric input and cooling capacity of 65,000 Btuh (19.45 kW) or less. Those
procedures are mandatory (as they are for central air conditioners) as the basis of
performance claims in any sort of efficiency advertising. This category will probably be

4pasis for an AIR Certification Program
Sofficially adopted by DoE and mandated for energy labeling purposes.
SCurrently in the DoE rulemaking process.



expanded this year to include two new products: variable speed heat pumps and multizone
heat pumps. It probably will not include water source, ground water, ground coil, solar
assisted, or hybrid heat pumps. Finally, this year’s DoE rulemaking will include rating
mixed systems for the cooling mode at least. These are units that are a composite of the
indoor and outdoor units, usually of different manufacturers. According to the NBS
recommended methodology one coil in each family will be tested and the other coils’
performance, may be predicted by a simulation which has been “"tuned to" or verified by
test.

NBS has defined coils which belong to the same family as those having in common all basic

design features which in a prominent way affect heat exchanger performance. The important

features that would place coils in different families are:

- basic configuration (A-shape coils, V-shape coils, slanted coils, flat-top coils, etc.)

- heat transfer surfaces on refrigerant side and air side (flat tubes vs. grooved tubes,
different fin shapes on the air side),

- tube and fin materials,

- method of refrigerant distribution between coil circuits

One coil family may cover different coil sizes.

Mixed matched units have been a particular point of controversy in utility rebate programs
and in various Federal qualification programs because of a lack of a mandatory rating
methodology. ARI has developed a certification program but as with all their programs it is
a voluntary program and not all coil manufacturers participate. It is anticipated that the
DoE mandate will recognize ARI certification and the proposed NBS methodology as an
acceptable rating method for mixed matched heat pumps in the cooling mode and eventually
in the heating mode, as well. It is also likely that individual manufacturers will be
allowed to submit their own methodology for approval.

In addition to the residential units under 65,000 Btuh that have been the focus of DoE
attention, ARI considers units up to 135,000 Btuh (39.55 kW) cooling capacity including
single and three phase motors (items 1, 2, 3, in Table B-2). They also have rating
programs for water source (intrabuilding heat recovery) and packaged terminal (motel room
type) heat pumps; also a generic group for commercial and industrial applications which
include the largest unitary units made (greater than 500 MBtu/h or 145 kW). All of these
types of equipment are evaluated in accordance with ASHRAE test standard 37-1978 and their
respective ARI rating document (items &4, 5, 7 of Table B-2) by the manufacturer. For those
product lines which sre entered under an ARI certification program specific units are
selected by ARI for test confirmation at ETL Laboratories in Cortland, NY, and capacity and
steady state efficiency (i.e. EER or COP) results of the entire manufacturer’s line are
published semi-annually in a catalogue for public review.
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